Biotinylation of plasma membrane localized glutamate receptors was performed using the Piece™ Cell Surface Protein Isolation Kit (Thermo Fisher Scientific) following the manufacturer’s instructions. Briefly, Dox-NIL iMNs were incubated with 0.25mg/ml Sulfo-NHS-SS-Biotin in cold room for 1~2 hrs with end-to-end shaking. After quenching, cells were harvested by scraping and lysed with lysis buffer from the Piece™ Cell Surface Protein Isolation Kit or the M-PER™ mammilian protein extraction buffer (Thermo Fisher Scientific). Cell lysate was incubated with High Capacity NeutrAvidin™ agorase beads (Thermo Fisher Scientific), and the bound protein was eluted in 2X SDS-PAGE sample buffer supplemented with 50mM DTT for 1 hr at room temperature with end-to-end rotation, and further analyzed by western blot.
GCaMP6 was cloned into the pMXs-Dest-WRE retroviral vector and transduced into reprogramming cultures concurrently with the motor neuron factors. To assess GCaMP6 activity, 1.5 μm glutamate was added to iMN cultures and cells were imaged continuously for 2 minutes at 24 frames per second. GFP flashes were scored manually using the video recording. At least 3 different fields of view from three independent cultures, totalling 50–100 iMNs, were scored per condition.

Our iMN survival results (Fig. 1c-e) suggest that the repeat expansion alters iMN glutamate sensing. In cortical neurons, homeostatic synaptic plasticity is maintained through endocytosis and subsequent lysosomal degradation of glutamate receptors in response to chronic glutamate signaling 45,46. Defects in this process lead to the accumulation of glutamate receptors on the cell surface 45,46.
To determine if a deletion of C9ORF72 or the C9ORF72 repeat expansion caused changes in endosomal trafficking in motor neurons, we examined the number of early endosomes (RAB5+, EEA1+), late endosomes (RAB7+), and lysosomes (LAMP1+, LAMP2+, LAMP3+) in control, C9ORF72 patient, C9ORF72+/−, and C9ORF72−/− iMNs. We observed the most significant difference in the lysosomal population, with C9ORF72 patient iMNs (n=4 patients) having fewer LAMP1+, LAMP2+, and LAMP3+ vesicles than control iMNs (n=4 controls)(Fig. 3c, d and Supplementary Fig. 8a-d). C9ORF72+/− and C9ORF72−/− also harbored fewer LAMP1+, LAMP2+, and LAMP3+ vesicles than isogenic control iMNs, indicating that reduced C9ORF72 levels alone leads to a loss of lysosomes (Fig. 3c, e, f and Supplementary Fig. 8a-d). ASO-mediated knockdown of C9ORF72 expression also decreased lysosome numbers in iMNs (Supplementary Fig. 8e). Although membrane fractionation showed that control and patient iMNs have similar amounts of LAMP2 in the lysosomal membrane fraction (Supplementary Fig. 8f), analysis of the immunofluorescence intensity of LAMP proteins suggests that this is likely due to the fact that C9ORF72 patient and C9ORF72+/− iMNs have a higher concentration of LAMP proteins in their lysosomal membranes, possibly as a result of fewer lysosomes being present (Supplementary Fig. 8g). Using electron microscopy to identify lysosomes by their high election density 40, we verified that the vesicles reduced in C9ORF72-deficient cells were lysosomes (Fig. 3g-i). Forced expression of either C9ORF72 isoform restored the number of LAMP1+, LAMP2+, and LAMP3+ lysosomes in patient (n=4 patients) and C9ORF72-deficient iMNs (Fig. 3c-f and Supplementary Fig. 8a-h). To determine if loss of C9ORF72 activity reduces lysosome numbers in motor neurons in vivo, we measured the number of lysosomes in spinal motor neurons in Nestin-Cre-Stop-Flox-C9orf72 mice 22. C9orf72−/− motor neurons contained significantly fewer Lamp1+ lysosomes than control motor neurons (Fig. 3j, k).

(a-b) Survival of control and CRISPR-mutant iMNs without excess glutamate with overexpression of eGFP or PR(50)-eGFP (a) or GR(50)-eGFP (b). (c-d) Survival of control and C9-ALS iMNs without excess glutamate with overexpression of eGFP or PR(50)-eGFP (c) or GR(50)-eGFP (d). For (a), n=50 (CTRL1 + GFP AND CTRL1 + PR(50)), 49 (C9ORF72+/− + GFP), and 47 (C9ORF72+/− + PR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line. For (b), n=50 (CTRL1 + GFP AND CTRL1 + GR(50)), 49 (C9ORF72+/− + GFP), and 40 (C9ORF72+/− + GR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line. For (c), n=50 (CTRL1 + GFP AND CTRL1 + PR(50)), 50 (from each of two C9-ALS lines + GFP), and 41 (from each of two C9-ALS lines + PR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line per condition. For (d), n=50 (CTRL1 + GFP AND CTRL1 + GR(50)), 50 (from each of two C9-ALS lines + GFP), and 46 and 47 (from two C9-ALS lines + GR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line per condition. All iMN survival experiments in (a-d) were analyzed by two-sided log-rank test, and statistical significance was calculated using the entire survival time course. Survival curves for the “+GFP” condition were included as a reference, but were not used in statistical analyses. (e) Relative decay in Dendra2 fluorescence over 12 hours in iMNs of specified genotypes. Mean +/− s.e.m. n = 18 (control) and 24 (C9ORF72+/−) iMNs quantified from two biologically independent iMN conversions each, two-tailed t-test with Welch’s correction between data points at each time point, t-value: 2.739, degrees of freedom: 25.62). (f-h) Immunostaining to determine endogenous PR+ puncta in control or C9-ALS iMNs with or without overexpression of C9ORF72 isoform A or B. Scale bar = 2 μm. This experiment was repeated twice with similar results. (g) Mean +/− s.d. n= 4 biologically independent iMN conversions generated from two different iPSC lines per genotype. Quantified values represent the average number of PR+ puncta in 40 iMNs from a single iMN conversion. Two-tailed t-test, t-value: 5.908, degrees of freedom: 6. (h) Mean +/− s.e.m. n= 3 biologically independent iMN conversions per condition. Quantified values represent the average number of PR+ puncta in 40 iMNs from a single iMN conversion. One-way ANOVA with Tukey correction, F-value (DFn, DFd): (2, 6)=10.5. iMN survival experiments in (a-d) were performed in a Molecular Devices ImageExpress.
Base text for this translation. ___. Wang Meng’ou’s , ed. Tangren xiaoshuo jiaoshi . Taipei: Zhongzheng Shuju, 1983, 2319-38. For other texts and editions see footnote 1. Translations Birch, Cyril. “The Curly-bearded Hero,” in Anthology of Chinese Literature, v. 1, New York, 1965, pp. 314-322. Chai, Ch’u, and Winberg Chai. “The Curly-Bearded Guest,” in A Treasury of Chinese Literature, New York, 1965, pp. 117-124. Hsu Sung-nien. “Biographie d’un preux barbu,” Anthologie de la littérature chinoise.Paris: Delagrave, 1933, pp. 241-6. Levenson, Christopher, tran., The Golden Casket. Harmondsworth, Middlesex: Penguin Books, 1967, pp. 137-47. Lévy, André. “Barbe-bouclée, L’étranger à la barbe et aux favoris bouclés,” in Histoires extraordinaires et récits fantastiques de la Chine ancienne.Paris: Flammarion, 1993, pp. 177-195 (with notes). Lin Yutang. “Curly-Beard,” in Famous Chinese Short Stories. New York: John Day (Cardinal), 1953, pp. 3-22. Schafer, E.H. “Three Divine Women of South China,” CLEAR, 1 (1979), pp. 31-42. Wang, Elizabeth Te-chen, tran. “The Curly-Bearded Guest,” in Wang’s Ladies of the Tang: 22 Classical Chinese Stories. Taipei: Mei Ya Publications, 1973, pp. 133-50.
Cells were fixed in 6-well culture plates in 2.5 % glutaraldehyde in 0.1M cacodylate buffer, post-fixed in 1% osmium tetroxide for 1 hour and block stained in 1% uranyl acetate in 0.1M acetate buffer pH 4.4 overnight at 4 ˚C. Dehydration was performed in increasing concentrations of ethanol (10%/25%/50%/75%/90%/100%/100%/100%) for 15 minutes each and infiltrated with increasing concentrations of Eponate12 (Ted Pella Inc., Redding, CA, USA), 25% Eponate12 (no catalyst) in ethanol for 3 hours, 50% overnight, 100% for 5 hours, 100% overnight, and polymerized in fresh Eponate12 with DMP-30 for 48 hours at 60 ˚C. Previously marked areas were sawed out, the tissue culture plastic was removed and the selected area sectioned parallel to the substrate at a thickness of 70 nm. Sections at a depth of 3–5 µm were collected on formvar-filmed 50 mesh copper grids and imaged at 80 kV in an FEI 208 Morgagni (FEI is in Hillsboro, OR, USA). Per micrograph, cytosol was used to quantify the number of electron dense spheres that were defined as lysosomes 40.
International Advisory Board: James Archibald (Translation Studies) - Hugo de Burgh (Chinese Media Studies) - Kristen Brustad (Arabic Linguistics) - Daniel Coste (French Language) - Luciano Curreri (Italian Literature) - Claudio Di Meola (German Linguistics) - Donatella Dolcini (Hindi Studies) - Johann Drumbl (German Linguistics) - Denis Ferraris (Italian Literature) - Lawrence Grossberg (Cultural Studies) - Stephen Gundle (Film and Television Studies) - Tsuchiya Junji (Sociology) - John McLeod (Post-colonial Studies) - Estrella Montolío Durán (Spanish Language) - Silvia Morgana (Italian Linguistics) - Samir Marzouki (Translation, Cultural Relations) - Mbare Ngom (Post-Colonial Literatures) - Christiane Nord (Translation Studies) - Roberto Perin (History) - Giovanni Rovere (Italian Linguistics) - Lara Ryazanova-Clarke (Russian Studies) - Shi-Xu (Discourse and Cultural Studies) - Srikant Sarangi (Discourse analysis) - Françoise Sabban, Centre d'études sur la Chine moderne et contemporaine (Chinese Studies) - Itala Vivan (Cultural Studies, Museum Studies)

(a) Phenotypic screening for small molecules that enhance the survival of C9-ALS iMNs. (b) Chemical structure of the PIKFYVE inhibitors YM201636 and Apilimod, and a reduced-activity analog of Apilimod. (c) Live cell images of iMNs at day 7 of treatment with DMSO or YM201636 (scale bar: 1 mm). This experiment was performed 3 times with similar results. (d) Survival effect of scrambled or PIFKVYE ASOs on C9-ALS iMNs in excess glutamate. n=50 iMNs per condition, iMNs quantified from 3 biologically independent iMN conversions per condition. (e) Survival effect of Apilimod and the reduced-activity analog on C9-ALS patient iMNs with neurotrophic factor withdrawal. n=50 iMNs per condition, iMNs quantified from 3 biologically independent iMN conversions per condition. All iMN survival experiments in (d, e) were analyzed by two-sided log-rank test, and statistical significance was calculated using the entire survival time course. (f) Activities of therapeutic targets in C9ORF72 ALS. (g, h) The effect of 3 μM Apilimod on NMDA-induced hippocampal injury in control, C9orf72+/−, or C9orf72−/− mice. (Mean +/− s.e.m. of n=3 mice per condition, one-way ANOVA with Tukey correction across all comparisons, F-value (DFn, DFd): (3, 8)=43.55, AP = Apilimod, red dashed lines outline the injury sites). (i, j) The effect of 3 μM Apilimod on the level of GR+ puncta in the dentate gyrus of control or C9-BAC mice. Mean +/− s.d. of the number of GR+ puncta per cell, each data point represents a single cell. n=20 (wild-type + DMSO), 20 (wild-type + Apilimod), 87 (C9-BAC + DMSO), and 87 (C9-BAC + Apilimod) cells quantified from 3 mice per condition, one-way ANOVA with Tukey correction for all comparisons, F-value (DFn, DFd): (3, 180) = 16.29. Scale bars = 2 μm, dotted lines outline nuclei, and white arrows denote GR+ punctae (i). (k) Model for the mechanisms that cooperate to cause neurodegeneration in C9ORF72 ALS/FTD. Proteins in red are known to be mutated in ALS or FTD. iMN survival experiments in (d, e) were performed in a Molecular Devices ImageExpress.
Minerals 2017, 7, 57; doi:10.3390/min7040057 www.mdpi.com/journal/minerals Article Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake Weijun Song 1,2, Hongze Gang 1, Yuanqing Ma 4, Shizhong Yang 1 and Bozhong Mu 1,3,* 1 Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, China; [email protected] (W.S.); [email protected] (H.G.); [email protected] (S.Y.) 2 School of Chemical Engineering, Qinghai University, Xining 810016, China 3 Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China 4 Qinghai Salt Lake Industry Group Co. Ltd., Golmud 816000, China; [email protected] * Correspondence: [email protected] Academic Editor: Javier Sánchez-España Received: 8 January 2017; Accepted: 2 April 2017; Published: 11 April 2017 Abstract: Lithium-brine is an important potential source of lithium. Much research and investigation has been carried out aimed at lithium recovery from brine. Although the distribution and occurrence status of lithium in brine have important implications for lithium recovery, few reports had correlated to this issue. In this article, a study was carried out to explore the lithium migration behavior during brine evaporation and KCl production process at Qarhan Salt Lake. The occurrence status of lithium both in fresh mined brine and residual brine after evaporation were also speculated by means of lithium concentration evaluation and theoretical calculation based on the Pitzer electrolyte solution theory. Results showed that, for Qarhan brine mined from the Bieletan region, most lithium was enriched in the residual brine during the brine evaporation process. The concentration of lithium in the residual brine could be more than 400 mg/L. More than 99.93% lithium ions in residual brine exist in free ions state and lithium does not precipitate from brine with a density of 1.3649 g/mL. The results also revealed that lithium concentration in wastewater discharged from KCl plants can reach a level of 243.8 mg/L. The investigation results provide a theoretical basis for comprehensive development and utilization of lithium resources in Qarhan Salt Lake. Keywords: lithium migration; occurrence status; Qarhan Salt Lake 1. Introduction As an energy metal of the twenty-first century, lithium had attracted more and more attention in the past few decades. Lithium has been widely applied in high energy batteries, controlled thermonuclear reactions, the manufacturing of ceramic and glass, and other fields [1–7]. Lithium consumption for batteries had increased most significantly due to the development of the electric vehicle industry and the popularity of portable electronic products. Stimulated by the political affairs, economic requirements, and environmental conservation, lithium resources have become the focus of the international mining market and lithium’s position as a strategic resource is becoming more prominent. Salt lake brine, thermal spring, and oilfield water are important geological sources of lithium. The commercial exploitation of the lithium resource of brine began at the Searles Lake in the US in 1936. Since then, more focus has been placed on recovering lithium from salt lake brine because of its low economical cost and low environmental impact [8–10]. As a country possessing huge amount of
Biotinylation of plasma membrane localized glutamate receptors was performed using the Piece™ Cell Surface Protein Isolation Kit (Thermo Fisher Scientific) following the manufacturer’s instructions. Briefly, Dox-NIL iMNs were incubated with 0.25mg/ml Sulfo-NHS-SS-Biotin in cold room for 1~2 hrs with end-to-end shaking. After quenching, cells were harvested by scraping and lysed with lysis buffer from the Piece™ Cell Surface Protein Isolation Kit or the M-PER™ mammilian protein extraction buffer (Thermo Fisher Scientific). Cell lysate was incubated with High Capacity NeutrAvidin™ agorase beads (Thermo Fisher Scientific), and the bound protein was eluted in 2X SDS-PAGE sample buffer supplemented with 50mM DTT for 1 hr at room temperature with end-to-end rotation, and further analyzed by western blot.
Samples were first fixed in 4% PFA (1x PBS) overnight at 4°C and were subsequently washed three times with 1x PBS. Next, cells were permeabilized with 0.3% Triton X-100 (1x PBS) for 10 min at room temperature, followed by three washes with 1x PBS for 10 min each. After permeabilization, the samples were equilibrated in 1x SSC buffer for 10 min at room temperature and then transferred into 50% formamide (2x SSC) for 10 min at 60°C. The repeat expansion-targeting probe and the negative control probe were ordered from Exiqon 58. During this step, the probe mixture (1µl salmon sperm (10 µg/µl), 0.5 µl E. coli tRNA (20 µg/µl), 0.4 µl probe (25 µM), 25 µl 80% formamide/per sample) was made and placed at 95°C for at least 10 min. The samples were submerged in 200 µl of hybridization buffer (4ml 100% formamide, 0.5 ml 20x SSC, 1 ml BSA fraction V, 0.5ml RVC (20 mM), 1ml NaPO4 (0.1 M), 3 ml nuclease-free water) and 27 µl of the probe mixture was added to each sample and incubated for 1 hour at 60°C. After probe hybridization, the samples were washed twice with 50% formamide (2x SSC) for 20 min each at 65°C and once more with 40% formamide (1x SSC) for 10 min at 60°C. The remaining formamide was removed by briefly washing with 1x SSC three times. A final crosslinking step was performed by first incubating the samples with 1x Tris-Glycine for 5 minutes followed by a 5 min incubation in 4% PFA. Samples were washed three times with 1x PBS, stained with DAPI, and imaged using a Zeiss LSM 800 confocal microscope.
Postsynaptic density extraction was done following a protocol published previously 63. Briefly, mouse spinal cord tissue or human cortical tissue was homogenized in cold Sucrose Buffer (320 mM Sucrose, 10 mM HEPES pH 7.4, 2 mM EDTA, 30 mM NaF, 40 mM β-Glycerophosphate, 10 mM Na3VO4, and protease inhibitor cocktail (Roche)) using a tissue grinder and then spun down at 500 g for 6 min at 4℃. The supernatant was re-centrifuged at 10,000 g for 10 min at 4℃. The supernatant was collected as the “Total” fraction, and the pellet was resuspended in cold Triton buffer (50 mM HEPES pH 7.4, 2 mM EDTA, 50 mM NaF, 40 mM β-Glycerophosphate, 10 mM Na3VO4, 1% Triton X-100 and protease inhibitor cocktail (Roche)) and then spun down at 30,000 RPM using a Beckman rotor MLA-130 for 40 min at 4℃. The supernantant was collected as the “Triton” fraction and the pellet was resuspended in DOC buffer (50 mM HEPES pH 9.0, 50 mM NaF, 40 mM β-Glycerophosphate, 10 mM Na3VO4, 20 uM ZnCl2, 1% Sodium Deoxycholate and protease inhibitor cocktail (Roche)) and collected as the “DOC”, PSD-enriched fraction. Collected samples were boiled with SDS-PAGE sample buffer and analyzed by western blot. Purity of the PSD preps was analyzed by immunoblotting for PSD-95 (PSD), p53 (non-PSD), and synaptophysin (non-PSD).
An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD.
To determine if C9ORF72 iMNs recapitulate neurodegenerative ALS processes, we examined their survival by performing longitudinal tracking of Hb9::RFP+ iMNs (Fig. 1a). This approach enabled us to distinguish differences in neurogenesis from differences in survival, which could not be addressed using previously-reported cross-sectional analyses6,7,10,26. In basal neuronal medium supplemented with neurotrophic factors, control and C9ORF72 patient iMNs survived equally well (Fig. 1b, Supplementary Fig. 3a, Supplementary Tables 5, 6). As human C9ORF72 ALS patients have elevated glutamate levels in their cerebrospinal fluid (possibly triggered by DPR-mediated aberrant splicing of the astrocytic excitatory amino acid transporter 2 EAAT2 4,27) we stimulated iMN cultures with a high glutamate pulse (12-hour treatment, 10 μM glutamate). This initiated a robust degenerative response in patient, but not control, iMNs (Fig. 1c-e and Supplementary Videos 3, 4) that was consistent across lines from multiple patients (n=6 patients) and controls (n=4 controls)(Fig. 1c, d and Supplementary Fig. 3d, e). While iMN survival varied slightly between live imaging systems, or between independent experiments due to the lengthy time course of neurodegeneration, the relative difference between control and C9-ALS patient iMNs was consistent (Fig. 1c - Nikon Biostation CT and Supplementary Fig. 3b - Molecular Devices ImageExpress). Moreover, iMNs from different iPSC lines derived from the same donor behaved similarly, suggesting genotypic differences accounted for these effects (Supplementary Fig. 3c). Treatment with glutamate receptor antagonists during glutamate administration prevented patient iMN degeneration (Fig. 1f). Alternatively, withdrawal of neurotrophic factors without glutamate stimulation also caused rapid degeneration of patient iMNs (n=3 patients, (Fig. 1g and Supplementary Fig. 3f).

To determine if PIKFYVE inhibition rescued patient iMN survival by reversing phenotypic changes caused by C9ORF72 haploinsufficiency, we measured glutamate receptor levels with and without PIKFYVE inhibitor treatment. PIKFYVE inhibition significantly lowered NR1 (NMDA receptor) and GLUR1 (AMPA receptor) levels in patient (n=4 patients) and C9ORF72+/− iMNs (Supplementary Fig. 15p-s). PIKFYVE inhibition also reduced electrophysiological activity in patient motor neurons (C9-ALS1) during glutamate treatment (Supplementary Fig. 15t). To determine if small molecule inhibition of Pikfyve rescues C9ORF72 disease processes in vivo, we first established an NMDA-induced hippocampal injury model in C9orf72-deficient mice. In control mice, hippocampal injection of NMDA caused neurodegeneration after 48 hrs as we have shown previously 57 (Supplementary Fig. 17a, b). Consistent with C9orf72-deficient mice having elevated NMDA receptor levels (Fig. 4h, i and Supplementary Fig. 11a-d), injection of NMDA caused significantly greater neurodegeneration in C9orf72+/− and C9orf72−/− mice than in controls (Fig. 6g, h). Importantly, co-administration of Apilimod rescued the NMDA-induced neurodegeneration in C9orf72-deficient mice (Fig. 6g, h).
Yingxiao Shi,#1,2,3 Shaoyu Lin,#1,2,3 Kim A. Staats,1,2,3 Yichen Li,1,2,3 Wen-Hsuan Chang,1,2,3 Shu-Ting Hung,1,2,3 Eric Hendricks,1,2,3 Gabriel R. Linares,1,2,3 Yaoming Wang,3,4 Esther Y. Son,5 Xinmei Wen,6 Kassandra Kisler,3,4 Brent Wilkinson,3 Louise Menendez,1,2,3 Tohru Sugawara,1,2,3 Phillip Woolwine,1,2,3 Mickey Huang,1,2,3 Michael J. Cowan,1,2,3 Brandon Ge,1,2,3 Nicole Koutsodendris,1,2,3 Kaitlin P. Sandor,1,2,3 Jacob Komberg,1,2,3 Vamshidhar R. Vangoor,7 Ketharini Senthilkumar,7 Valerie Hennes,1,2,3 Carina Seah,1,2,3 Amy R. Nelson,3,4 Tze-Yuan Cheng,8 Shih-Jong J. Lee,8 Paul R. August,9 Jason A. Chen,10 Nicholas Wisniewski,10 Hanson-Smith Victor,10 T. Grant Belgard,10 Alice Zhang,10 Marcelo Coba,3,11 Chris Grunseich,12 Michael E. Ward,12 Leonard H. van den Berg,13 R. Jeroen Pasterkamp,7 Davide Trotti,6 Berislav V. Zlokovic,3,4 and Justin K. Ichida1,2,3,†
×