With the four components of a chemical heat pump (two solid-gas reactors, an evaporator and a condenser), a cycle of the double-effect type can be applied to continuous refrigeration. The performance of this process is analysed, allowing the infinite sink temperature and the couples of reactive salts to be used, which depend on the production temperature envisaged, to be selected. The results are ... [Show full abstract]Read more
The kung fu component of Li force is limited by one's physical condition. When a person passes his/her prime age, one's kung fu ability will pass the optimum level, too. The degree of kung fu will decline when muscles and bones are not as strong as they used to be. On the other hand, the kung fu aspect of Neijing is said to continually grow as long as one lives.[7]
Given our observation that iMNs with reduced C9ORF72 levels are hypersensitive to DPR toxicity, we wondered if this might be due to a general disruption of protein turnover by DPRsHowever, PR50-GFP expression did not impair turnover of APP or Tau (Supplementary Fig. 14f, g and Supplementary Fig. 5l). Thus the neurotoxicity caused by DPRs that accumulate rapidly in C9-ALS motor neurons due to reduced C9ORF72 levels is not due to global disruption of protein turnover.

Samples were first fixed in 4% PFA (1x PBS) overnight at 4°C and were subsequently washed three times with 1x PBS. Next, cells were permeabilized with 0.3% Triton X-100 (1x PBS) for 10 min at room temperature, followed by three washes with 1x PBS for 10 min each. After permeabilization, the samples were equilibrated in 1x SSC buffer for 10 min at room temperature and then transferred into 50% formamide (2x SSC) for 10 min at 60°C. The repeat expansion-targeting probe and the negative control probe were ordered from Exiqon 58. During this step, the probe mixture (1µl salmon sperm (10 µg/µl), 0.5 µl E. coli tRNA (20 µg/µl), 0.4 µl probe (25 µM), 25 µl 80% formamide/per sample) was made and placed at 95°C for at least 10 min. The samples were submerged in 200 µl of hybridization buffer (4ml 100% formamide, 0.5 ml 20x SSC, 1 ml BSA fraction V, 0.5ml RVC (20 mM), 1ml NaPO4 (0.1 M), 3 ml nuclease-free water) and 27 µl of the probe mixture was added to each sample and incubated for 1 hour at 60°C. After probe hybridization, the samples were washed twice with 50% formamide (2x SSC) for 20 min each at 65°C and once more with 40% formamide (1x SSC) for 10 min at 60°C. The remaining formamide was removed by briefly washing with 1x SSC three times. A final crosslinking step was performed by first incubating the samples with 1x Tris-Glycine for 5 minutes followed by a 5 min incubation in 4% PFA. Samples were washed three times with 1x PBS, stained with DAPI, and imaged using a Zeiss LSM 800 confocal microscope.

To determine if reduced C9orf72 levels leads to glutamate receptor accumulation in vivo, we examined spinal motor neurons deleted of C9orf72 in Nestin-Cre-Stop-Flox-C9orf72 mice 22. Immunofluorescence analysis indicated that Nr1 (NMDA) and GluR1 (AMPA) levels were elevated in C9orf72-null motor neurons (Supplementary Fig. 12a, b). To confirm these findings, we isolated post-synaptic densities from the spinal cords of control and C9orf72 knockout mice. Post-synaptic density fractions contained glutamate receptors and PSD-95, but not p53 or synaptophysin, indicating they were enriched for post-synaptic density proteins (Supplementary Fig. 12c, 5i). Immunoblotting showed that post-synaptic densities in C9orf72 knockout mice contained significantly higher levels of Nr1 and Glur1 than in control mice (Fig. 4i, j and Supplementary Fig. 5j).
To verify that PIKFYVE-dependent modulation of vesicle trafficking was responsible for rescuing C9ORF72 patient iMN survival, we tested the ability of a constitutively active RAB5 mutant to block C9ORF72 patient iMN degeneration. Active RAB5 recruits PI3-kinase to synthesize PI3P from PI and therefore, like PIKFYVE inhibition, increases PI3P levels 56. Constitutively active RAB5 did not improve control iMN survival (n=2 controls)(Supplementary Fig. 15k), but successfully rescued C9ORF72 patient iMN survival (n=3 patients)(Supplementary Fig. 15l). In constrast, dominant negative RAB5, wild-type RAB5, or constitutively active RAB7 did not rescue C9ORF72 patient iMN survival (n=1, 3, 3 patients, respectively)(Supplementary Fig. 14m-o).
Total RNA was extracted from sorted iMNs at day 21 post-transduction with Trizol RNA Extraction Kit (Life Technologies) and reverse transcribed with an Oligo dT primer using ProtoScript® II First Strand Synthesis Kit (NEB). RNA integrity was checked using the Experion system (Bio-Rad). Real-time PCR was performed with iTaq Universal SYBR Green Supermix (Bio-Rad) using primers shown in Supplementary Data Table 4.
Cells were fixed in 6-well culture plates in 2.5 % glutaraldehyde in 0.1M cacodylate buffer, post-fixed in 1% osmium tetroxide for 1 hour and block stained in 1% uranyl acetate in 0.1M acetate buffer pH 4.4 overnight at 4 ˚C. Dehydration was performed in increasing concentrations of ethanol (10%/25%/50%/75%/90%/100%/100%/100%) for 15 minutes each and infiltrated with increasing concentrations of Eponate12 (Ted Pella Inc., Redding, CA, USA), 25% Eponate12 (no catalyst) in ethanol for 3 hours, 50% overnight, 100% for 5 hours, 100% overnight, and polymerized in fresh Eponate12 with DMP-30 for 48 hours at 60 ˚C. Previously marked areas were sawed out, the tissue culture plastic was removed and the selected area sectioned parallel to the substrate at a thickness of 70 nm. Sections at a depth of 3–5 µm were collected on formvar-filmed 50 mesh copper grids and imaged at 80 kV in an FEI 208 Morgagni (FEI is in Hillsboro, OR, USA). Per micrograph, cytosol was used to quantify the number of electron dense spheres that were defined as lysosomes 40.
“The Tale of the Curly-Bearded Guest” 231Studies Bian, Xiaoxuan . “Lun ‘Qiu ran ke zhuan’ de zuozhe, zuonian ji zhengzhi beijing” , in Dongnan daxue xuebao. Vol. 3, 2005, pp. 93-98. Cai, Miaozhen . “Chongtu yu jueze — ‘Qiu ran ke zhuan’ de renweu xingge suzao ji qi yihan” in Xingda renwen xuebao . Vol. 34, 2004, pp. 153-180. Zhang, Hong . “Du Guangting ‘Qiu ran ke zhuan’ de liuchuan yu yingxiang” in Zhongguo daojiao, vol. 1, 1997, pp. 28-31. Liu, Zhiwei . “Gujin ‘Qiu ran ke zhuan’ de yanjiu fansi” in Xibei daxue xuebao. Vol. 1, 2000. Sun, Yiping . Du Guangting pingzhuan. Nanjing: Nanjing daxue chubanshe, 2005. ___. “‘Qiu xu ke’ yu ‘Qiu ran ke’” in Zhongguo daojiao. vol. 6, 2005, pp. 14-17. Luo, Zhengming . Du Guangting daojiao xiaoshuo yanjiu . Chengdu: Bashu shushe, 2005. Wang, Meng’ou . “Qiuran ke yu Tang zhi chuangye chuangshuo” in Tangren xiaoshuo yanjiu siji. Taipei: Yiwen chubanshe, 1978, p. 254. Xu, Jiankun . “‘Qiu ran ke zhuan’ jili jiegou xintan” in Donghai zhongwen xuebao . Vol. 11, 1994, pp. 61-72. Ye, Qingbing . “‘Qiu ran ke zhuan’ de xiezuo jiqiao” in Zhongguo gudian wenxue yanjiu congkan — Xiaoshuo zhi bu . Taipei: Juliu, 1977, pp. 167-79.
Eliminating C9ORF72 protein expression from one or both alleles reduced iMN survival to levels comparable to patient iMNs (Fig. 2f). Antisense oligonucleotide (ASO)-mediated suppression of C9ORF72 expression levels also reduced control iMN survival (Fig. 2g and Supplementary Fig. 4j), suggesting that reduced iMN survival was not due to an off-target effect of the CRISPR/Cas9 genome editing. Exogenously restoring C9ORF72 expression in C9ORF72+/− and C9ORF72−/− iMNs rescued survival (Supplementary Fig. 4k, l), verifying that depletion of C9ORF72 caused the observed neurodegeneration.
Mice were anesthetized with i.p. ketamine (100 mg ⁄ kg) and xylazine (10 mg ⁄ kg), and body temperature kept at 36.9 ± 0.1°C with a thermostatic heating pad. Mice were placed in a stereotactic apparatus (ASI Instruments, USA) and the head is fixed accordingly. A burr hole was drilled, and an injection needle (33 gauge) was lowered into the hippocampus between CA1 and the dentate gyrus (AP −2.0, ML +1.5, DV −1.8). NMDA (20 nmol in 0.3 μl of phosphate-buffered saline, pH 7.4) was infused over 2 min using a micro-injection system (World Precision Instruments, Sarasota, FL, USA). Simultaneously, or independently, Apilimod (0.3 μl of 20 μM in phosphate-buffered saline, pH 7.4) was infused over 2 min using a micro-injection system (World Precision Instruments, Sarasota, FL, USA). The needle was left in place for an additional 8 min after the injection. Animals were euthanized 48 h later. Brains were quickly removed, frozen on dry ice, and stored at −80°C until processing. Thirty-micrometer-thick coronal sections were prepared using a cryostat. Every fifth section 1 mm anterior and posterior to the site of injection was stained with cresyl violet. The lesion area was identified by the loss of staining, measured by NIH ImageJ software and integrated to obtain the volume of injury.
To measure the effect of dipeptide repeat protein expression on iMN survival, PR50 and GR50 were cloned into the pHAGE lentiviral vector as fusions with GFP to allow tracking of protein expression. iMN cultures were transduced with PR50 and GR50 lentiviruses at day 17 of reprogramming and longitudinal survival analysis was started the same day. 10 ng/ml of GDNF, BDNF, and CNTF was maintained throughout the experiment, and glutamate treatment was not performed. To measure PR50 turnover, PR50 was cloned into the pHAGE lentiviral vector as a fusion with Dendra2 (Addgene). iPSC-derived fibroblasts were generated according to Daley and colleagues64. Briefly, when C9ORF72−/− iPSC cultures reached 80% confluence, the medium was switched from mTeSR1 (Stem Cell Technologies) to human fibroblast medium containing DMEM (Life Technologies), 10% fetal bovine serum (FBS)(Thermo Fisher Scientific), and 1% penicillin/streptomycin (Life Technologies). Cells were passaged 2 to 3 times using Accutase (Life Technologies) before use in experiments. iPSC-derived fibroblasts were transduced with either pMXs-eGFP or pMXs-C9ORF72 isoform B-T2A-eGFP retrovirus and treated with 10 μg/ml mitomycin C for 3 hrs to inhibit cell proliferation. The cells were then transduced with the PR50–Dendra2 lentivirus and exposed to blue light for 1.5 sec using a lumencor LED light source to initiate photoconversion. The amount of decay (as a fraction of the starting level) of the red fluorescent punctae was monitored by longitudinal time lapse imaging in a Molecular Devices ImageExpress and analyzed using SVCell 2.0 (DRVision Technologies). Fluorescence was quantified at t = 0 and 12 hours after photoconversion. Distinct photoconverted punctae were treated as discrete objects for analysis (n = 20 each for +eGFP and +C9ORF72-T2A-eGFP). For each object, background fluorescence was subtracted and fluorescence was normalized according to object size. The fractional decay was statistically analyzed by two-tailed Student’s t-test. ** - p<.01.
×