“The Tale of the Curly-Bearded Guest” 231Studies Bian, Xiaoxuan . “Lun ‘Qiu ran ke zhuan’ de zuozhe, zuonian ji zhengzhi beijing” , in Dongnan daxue xuebao. Vol. 3, 2005, pp. 93-98. Cai, Miaozhen . “Chongtu yu jueze — ‘Qiu ran ke zhuan’ de renweu xingge suzao ji qi yihan” in Xingda renwen xuebao . Vol. 34, 2004, pp. 153-180. Zhang, Hong . “Du Guangting ‘Qiu ran ke zhuan’ de liuchuan yu yingxiang” in Zhongguo daojiao, vol. 1, 1997, pp. 28-31. Liu, Zhiwei . “Gujin ‘Qiu ran ke zhuan’ de yanjiu fansi” in Xibei daxue xuebao. Vol. 1, 2000. Sun, Yiping . Du Guangting pingzhuan. Nanjing: Nanjing daxue chubanshe, 2005. ___. “‘Qiu xu ke’ yu ‘Qiu ran ke’” in Zhongguo daojiao. vol. 6, 2005, pp. 14-17. Luo, Zhengming . Du Guangting daojiao xiaoshuo yanjiu . Chengdu: Bashu shushe, 2005. Wang, Meng’ou . “Qiuran ke yu Tang zhi chuangye chuangshuo” in Tangren xiaoshuo yanjiu siji. Taipei: Yiwen chubanshe, 1978, p. 254. Xu, Jiankun . “‘Qiu ran ke zhuan’ jili jiegou xintan” in Donghai zhongwen xuebao . Vol. 11, 1994, pp. 61-72. Ye, Qingbing . “‘Qiu ran ke zhuan’ de xiezuo jiqiao” in Zhongguo gudian wenxue yanjiu congkan — Xiaoshuo zhi bu . Taipei: Juliu, 1977, pp. 167-79.
Near the cities Beijing, Tianjin, Shijiazhuang, and Jinan, Wuqiao County has many transportation connections. There are many rail and bus services operating in the town. Wuqiao was the first Chinese city to open up its doors to the world under the "Open Door" policy and over many years development, Wuqiao has become a flourishing city with a favorable investment environment.[citation needed]

A 241-bp digoxigenin (DIG)-labeled probe was generated from 100 ng control genomic DNA (gDNA) by PCR reaction using Q5® High-Fidelity DNA Polymerase (NEB) with primers shown in Supplementary Data Table 4. Genomic DNA was harvested from control and patient iPSCs using cell lysis buffer (100 mM Tris-HCl pH 8.0, 50 mM EDTA, 1% w/v sodium dodecyl sulfate (SDS)) at 55ºC overnight and performing phenol:chloroform extraction. A total of 25 µg of gDNA was digested with XbaI at 37 ºC overnight, run on a 0.8% agarose gel, then transferred to a positive charged nylon membrane (Roche) using suction by vacuum and UV-crosslinked at 120 mJ. The membrane was pre-hybridized in 25 ml DIG EasyHyb solution (Roche) for 3 h at 47 ºC then hybridized at 47 ºC overnight in a shaking incubator, followed by two 5-min washes each in 2X Standard Sodium Citrate (SSC) and in 0.1% SDS at room temperature, and two 15-min washes in 0.1x SSC and in 0.1% SDS at 68 ºC. Detection of the hybridized probe DNA was carried out as described in DIG System User’s Guide. CDP-Star® Chemilumnescent Substrate (Sigma-Aldrich) was used for detection and the signal was developed on X-ray film (Genesee Scientific) after 20 to 40 min.
All experiments involving live vertebrates (cortical glial isolation) performed at USC were done in compliance with ethical regulations approved by the USC IACUC committee. All animal use and care at the University Medical Center Utrecht were in accordance with local institution guidelines of the University Medical Center Utrecht (Utrecht, the Netherlands) and approved by the Dierexperimenten Ethische Commissie Utrecht with the protocol number DEC 2013.I.09.069.
Yingxiao Shi,#1,2,3 Shaoyu Lin,#1,2,3 Kim A. Staats,1,2,3 Yichen Li,1,2,3 Wen-Hsuan Chang,1,2,3 Shu-Ting Hung,1,2,3 Eric Hendricks,1,2,3 Gabriel R. Linares,1,2,3 Yaoming Wang,3,4 Esther Y. Son,5 Xinmei Wen,6 Kassandra Kisler,3,4 Brent Wilkinson,3 Louise Menendez,1,2,3 Tohru Sugawara,1,2,3 Phillip Woolwine,1,2,3 Mickey Huang,1,2,3 Michael J. Cowan,1,2,3 Brandon Ge,1,2,3 Nicole Koutsodendris,1,2,3 Kaitlin P. Sandor,1,2,3 Jacob Komberg,1,2,3 Vamshidhar R. Vangoor,7 Ketharini Senthilkumar,7 Valerie Hennes,1,2,3 Carina Seah,1,2,3 Amy R. Nelson,3,4 Tze-Yuan Cheng,8 Shih-Jong J. Lee,8 Paul R. August,9 Jason A. Chen,10 Nicholas Wisniewski,10 Hanson-Smith Victor,10 T. Grant Belgard,10 Alice Zhang,10 Marcelo Coba,3,11 Chris Grunseich,12 Michael E. Ward,12 Leonard H. van den Berg,13 R. Jeroen Pasterkamp,7 Davide Trotti,6 Berislav V. Zlokovic,3,4 and Justin K. Ichida1,2,3,†
We also found that Reduced C9ORF72 activity also induces iMN hypersensitivity to DPRs by impairing their clearance. This uncovers a more direct form of cooperative pathogenesis between gain- and loss-of-function mechanisms in C9ORF72 ALS/FTD. Through a potentially similar mechanism, reduced C9orf72 levels can also facilitate cytoplasmic TDP-43 accumulation in mouse neurons 20.
Complementary DNAs (cDNAs) for the iMN factors (Ngn2, Lhx3, Isl1, NeuroD1, Ascl1, Myt1l, and Brn2) and iDA neuron factors (Ascl1, Brn2, Myt1l, Lmx1a, and Foxa2), were purchased from Addgene. cDNA for C9ORF72 was purchased from Thermo Scientific. Each cDNA was cloned into the pMXs retroviral expression vector using Gateway cloning technology (Invitrogen). The Hb9::RFP lentiviral vector was also purchased from Addgene (ID: 37081). Viruses were produced as follows. HEK293 cells were transfected at 80–90% confluency with viral vectors containing genes of interest and viral packaging plasmids (PIK-MLV-gp and pHDM for retrovirus; pPAX2 and VSVG for lentivirus) using polyethylenimine (PEI)(Sigma-Aldrich). The medium was changed 24h after transfection. Viruses were harvested at 48h and 72 h after transfection. Viral supernatants were filtered with 0.45 µM filters, incubated with Lenti-X concentrator (Clontech) for 24 h at 4 ºC, and centrifuged at 1,500 x g at 4ºC for 45 min. The pellets were resuspended in 300 µl DMEM + 10% FBS and stored at −80 ºC.
The degree of Li force one can employ in kung fu depends on several variables such as resilience of muscles, strength of bones, speed and timing of attack and so on. An effective way to enhance the Li force is to exercise one's muscles and bones by applying increasing pressure on them (weight training, gym exercises, etc.).[2] The stronger one's muscles and bones become, the more powerful and skillful the level of kung fu is.[3]
Journalistic genres in China have acquired distinctive characteristics and have shaped original sub-genres that are unique to the local journalistic tradition. While many studies analyzing their characteristics have been written in Chinese, works on the subject in other languages are still scarce. This contribution aims to fill this void by presenting the two main genres in which written journalistic production can be understood, i.e., “news” and “views”, as well as their sub-genres, and showing how they are interpreted in Chinese media studies. The analysis is based on a corpus of recent academic publications that represent the current Chinese scholarly interpretations of local genres of journalism. In doing so, the paper also offers insights on recent theoretical reflections about the functions of journalistic writing in the People’s Republic of China.
Our results highlight the importance of C9ORF72 protein function, RAB5 activity, PI3P levels, and lysosomeal function as key therapeutic targets for C9ORF72 ALS/FTD. By generating PI3P, RAB5 drives early endosomal maturation and the initial stages of lysosomal biogenesis (Fig. 6f)59. PI3P also plays important roles in autophagosome formation and autophagsome-lysosome fusion. Indeed, a previous study suggests that PIKFYVE inhibition may increase autophagic flux 53, and this should be investigated in the context of motor neurons. Loss-of-function mutations in two other genes whose proteins function to increase PI3P levels, ALS2 and FIG4, also cause ALS 1. ALS2 encodes the RAB5 guanine exchange factor ALSIN 60, while FIG4 converts PI(3,5)P2 into PI3P 55(Fig. 6f). In addition, proteins encoded by several other ALS genes play key roles in lysosomal biogenesis, including CHMP2B, OPTN, and SQSTM1 1. The fact that FIG4 and ALS2 loss-of-function mutations can cause ALS suggests that PIKFYVE inhibition or RAB5 activation may be capable of modulating ALS disease processes in humans.
Local field potentials (LFPs) were recorded from iPSC-derived motor neurons on days 17–21 in culture in 6-well multielectrode chips (9 electrodes and 1 ground per well) using a MultiChannel Systems MEA-2100 multielectrode array (MEA) amplifier (ALA Scientific) with built-in heating elements set to 37°C. Cells were allowed to acclimate for 5 minutes after chips were placed into the MEA amplifier, and after glutamate addition (10 μM final concentration). For 1 μM Apilimod treatments, chips were incubated for 35 min in a humidified incubator in the presence of the particular drug, then returned to the MEA amplifier and acclimated for 5 min before beginning recordings. For each condition, recordings (5 min baseline, 10 min glutamate and/or drug, 40 kHz sampling rate) were filtered between 1–500 Hz, and average LFP frequency per well was determined using the accompanying MC Rack software.
(a-b) Survival of control and CRISPR-mutant iMNs without excess glutamate with overexpression of eGFP or PR(50)-eGFP (a) or GR(50)-eGFP (b). (c-d) Survival of control and C9-ALS iMNs without excess glutamate with overexpression of eGFP or PR(50)-eGFP (c) or GR(50)-eGFP (d). For (a), n=50 (CTRL1 + GFP AND CTRL1 + PR(50)), 49 (C9ORF72+/− + GFP), and 47 (C9ORF72+/− + PR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line. For (b), n=50 (CTRL1 + GFP AND CTRL1 + GR(50)), 49 (C9ORF72+/− + GFP), and 40 (C9ORF72+/− + GR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line. For (c), n=50 (CTRL1 + GFP AND CTRL1 + PR(50)), 50 (from each of two C9-ALS lines + GFP), and 41 (from each of two C9-ALS lines + PR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line per condition. For (d), n=50 (CTRL1 + GFP AND CTRL1 + GR(50)), 50 (from each of two C9-ALS lines + GFP), and 46 and 47 (from two C9-ALS lines + GR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line per condition. All iMN survival experiments in (a-d) were analyzed by two-sided log-rank test, and statistical significance was calculated using the entire survival time course. Survival curves for the “+GFP” condition were included as a reference, but were not used in statistical analyses. (e) Relative decay in Dendra2 fluorescence over 12 hours in iMNs of specified genotypes. Mean +/− s.e.m. n = 18 (control) and 24 (C9ORF72+/−) iMNs quantified from two biologically independent iMN conversions each, two-tailed t-test with Welch’s correction between data points at each time point, t-value: 2.739, degrees of freedom: 25.62). (f-h) Immunostaining to determine endogenous PR+ puncta in control or C9-ALS iMNs with or without overexpression of C9ORF72 isoform A or B. Scale bar = 2 μm. This experiment was repeated twice with similar results. (g) Mean +/− s.d. n= 4 biologically independent iMN conversions generated from two different iPSC lines per genotype. Quantified values represent the average number of PR+ puncta in 40 iMNs from a single iMN conversion. Two-tailed t-test, t-value: 5.908, degrees of freedom: 6. (h) Mean +/− s.e.m. n= 3 biologically independent iMN conversions per condition. Quantified values represent the average number of PR+ puncta in 40 iMNs from a single iMN conversion. One-way ANOVA with Tukey correction, F-value (DFn, DFd): (2, 6)=10.5. iMN survival experiments in (a-d) were performed in a Molecular Devices ImageExpress.
×