Mumcoupon.com is #1 place to find 100% off and $10 Udemy coupons. We update every day with the latest Udemy coupon codes and free courses. Udemy has over 80,000 online courses taught by expert instructors. Discover free online Udemy courses here and start learning new skills. Coupon codes do not last long, come back often to check for new free courses. Join our mailing list and follow us on social media for new free Udemy course updates. Happy Learning…!

Immunostaining revealed that C9ORF72+/− and C9ORF72−/− iMNs contained elevated levels of NMDA (NR1) and AMPA (GLUR1) receptors on neurites and dendritic spines compared to control iMNs under basal conditions (Fig. 4a, c, d and Supplementary Fig. 5b and 10a, c-e, g, h, j, k). In addition, control iMNs treated with C9ORF72-specific ASOs displayed increased numbers of NMDA and AMPA receptors in their neurites (Supplementary Fig. 10l, m). C9ORF72 patient iMNs (n=3 patients) also showed elevated NR1 and GLUR1 levels compared to controls (n=3 controls), and forced expression of C9ORF72 isoform B reduced glutamate receptor levels in patient iMNs (n=3 patients) to that of controls (n=3 controls) (Fig. 4a-c and Supplementary Fig. 10a-h). mRNA levels of NR1 (GRIN1) and GLUR1 (GRIA1) were not elevated in flow-purified C9ORF72+/− iMNs, indicating that increased transcription could not explain the increased glutamate receptor levels (Supplementary Fig. 10n).


Local field potentials (LFPs) were recorded from iPSC-derived motor neurons on days 17–21 in culture in 6-well multielectrode chips (9 electrodes and 1 ground per well) using a MultiChannel Systems MEA-2100 multielectrode array (MEA) amplifier (ALA Scientific) with built-in heating elements set to 37°C. Cells were allowed to acclimate for 5 minutes after chips were placed into the MEA amplifier, and after glutamate addition (10 μM final concentration). For 1 μM Apilimod treatments, chips were incubated for 35 min in a humidified incubator in the presence of the particular drug, then returned to the MEA amplifier and acclimated for 5 min before beginning recordings. For each condition, recordings (5 min baseline, 10 min glutamate and/or drug, 40 kHz sampling rate) were filtered between 1–500 Hz, and average LFP frequency per well was determined using the accompanying MC Rack software.
The repeat expansion suppresses the production of C9ORF72 protein by inhibiting transcription 3,4,6,7,9,17, raising the possibility that haploinsufficiency for C9ORF72 activity triggers disease pathogenesis. Consistent with this hypothesis, elimination of C9orf72 activity alters myeloid cell behavior in mice 14,18,19 and in vitro studies suggest that C9ORF72 activity may enhance autophagy 20,21.

To determine if C9ORF72 iMNs recapitulate neurodegenerative ALS processes, we examined their survival by performing longitudinal tracking of Hb9::RFP+ iMNs (Fig. 1a). This approach enabled us to distinguish differences in neurogenesis from differences in survival, which could not be addressed using previously-reported cross-sectional analyses6,7,10,26. In basal neuronal medium supplemented with neurotrophic factors, control and C9ORF72 patient iMNs survived equally well (Fig. 1b, Supplementary Fig. 3a, Supplementary Tables 5, 6). As human C9ORF72 ALS patients have elevated glutamate levels in their cerebrospinal fluid (possibly triggered by DPR-mediated aberrant splicing of the astrocytic excitatory amino acid transporter 2 EAAT2 4,27) we stimulated iMN cultures with a high glutamate pulse (12-hour treatment, 10 μM glutamate). This initiated a robust degenerative response in patient, but not control, iMNs (Fig. 1c-e and Supplementary Videos 3, 4) that was consistent across lines from multiple patients (n=6 patients) and controls (n=4 controls)(Fig. 1c, d and Supplementary Fig. 3d, e). While iMN survival varied slightly between live imaging systems, or between independent experiments due to the lengthy time course of neurodegeneration, the relative difference between control and C9-ALS patient iMNs was consistent (Fig. 1c - Nikon Biostation CT and Supplementary Fig. 3b - Molecular Devices ImageExpress). Moreover, iMNs from different iPSC lines derived from the same donor behaved similarly, suggesting genotypic differences accounted for these effects (Supplementary Fig. 3c). Treatment with glutamate receptor antagonists during glutamate administration prevented patient iMN degeneration (Fig. 1f). Alternatively, withdrawal of neurotrophic factors without glutamate stimulation also caused rapid degeneration of patient iMNs (n=3 patients, (Fig. 1g and Supplementary Fig. 3f).
Human lymphocytes from healthy subjects and ALS patients were obtained from the NINDS Biorepository at the Coriell Institute for Medical Research and reprogrammed into iPSCs as previously described using episomal vectors61. Briefly, mammalian expression vectors containing Oct4, Sox2, Klf4, L-Myc, Lin28, and a p53 shRNA were introduced into the lymphocytes using the Adult Dermal Fibroblast Nucleofector™ Kit and Nucleofector™ 2b Device (Lonza) according to the manufacturer’s protocol. The cells were then cultured on mouse feeders until iPSC colonies appeared. The colonies were then expanded and maintained on Matrigel (BD) in mTeSR1 medium (Stem Cell Technologies).
Human EEA1 (1–209) with an N-terminal GST tag in pGEX-6P-1 vector or GST only were expressed in E. Coli BL21 (DE3) cells (Thermo Fisher Scientific) for 12 hr at 18℃. Harvested cells were lysed by sonication in cold GST Purification Buffer (50 mM Tris pH 8.0, 200 mM NaCl, 2 mM DTT, 0.5 mg/ml Lysozyme, 0.2% Triton X-100 and protease inhibitor cocktail (Roche)). After centrifugation at 15,000 g for 30 min at 4℃, clarified lysate was incubated with Glutathione Sepharose 4B beads (GE Healthcare Life Science) for 3 hours to purify GST-EEA1 or GST. HEK cells were transfected with C-terminal 3XFLAG tagged C9ORF72 isoform A or B, or eGFP constructs and harvested 36–48 hr post-transfection in cold Lysis Buffer (25 mM HEPES pH 7.4, 100 mM NACl, 5 mM MgCl2, 1 mM DTT, 10% Glycerol, 0.1% Triton X-100 and protease inhibitor cocktail (Roche)).After centrifugation at 8,000 g for 10 min at 4℃, the clarified supernatant was incubated with washed GST-EEA1 or GST beads for 2 hr at 4℃ with end-to-end rotation. Beads were then boiled in 2X SDS-PAGE sample buffer and pulled-down protein was analyzed by western blot.
The degree of Li force one can employ in kung fu depends on several variables such as resilience of muscles, strength of bones, speed and timing of attack and so on. An effective way to enhance the Li force is to exercise one's muscles and bones by applying increasing pressure on them (weight training, gym exercises, etc.).[2] The stronger one's muscles and bones become, the more powerful and skillful the level of kung fu is.[3]
Yingxiao Shi,#1,2,3 Shaoyu Lin,#1,2,3 Kim A. Staats,1,2,3 Yichen Li,1,2,3 Wen-Hsuan Chang,1,2,3 Shu-Ting Hung,1,2,3 Eric Hendricks,1,2,3 Gabriel R. Linares,1,2,3 Yaoming Wang,3,4 Esther Y. Son,5 Xinmei Wen,6 Kassandra Kisler,3,4 Brent Wilkinson,3 Louise Menendez,1,2,3 Tohru Sugawara,1,2,3 Phillip Woolwine,1,2,3 Mickey Huang,1,2,3 Michael J. Cowan,1,2,3 Brandon Ge,1,2,3 Nicole Koutsodendris,1,2,3 Kaitlin P. Sandor,1,2,3 Jacob Komberg,1,2,3 Vamshidhar R. Vangoor,7 Ketharini Senthilkumar,7 Valerie Hennes,1,2,3 Carina Seah,1,2,3 Amy R. Nelson,3,4 Tze-Yuan Cheng,8 Shih-Jong J. Lee,8 Paul R. August,9 Jason A. Chen,10 Nicholas Wisniewski,10 Hanson-Smith Victor,10 T. Grant Belgard,10 Alice Zhang,10 Marcelo Coba,3,11 Chris Grunseich,12 Michael E. Ward,12 Leonard H. van den Berg,13 R. Jeroen Pasterkamp,7 Davide Trotti,6 Berislav V. Zlokovic,3,4 and Justin K. Ichida1,2,3,†

For experiments other than the comparison of Apilimod and the reduced-activity analog, Apilimod was purchased from Axon Medchem (cat. no. 1369). For the reduced-activity analog assays, Apilimod and the reduced activity analog were synthesized at Icagen, Inc. according to the schemes shown in Supplementary Fig. 16. PIKFYVE kinase inhibition was measured using the ADP-Glo kinase assay from SignalChem according to the manufacturer’s instructions, using purified PIKFYVE kinase (SignalChem cat. no. P17–11BG-05).


(a) The levels of C9ORF72 variant 2 mRNA transcript (encoding isoform A). Values are mean ± s.e.m., two-tailed t-test with Welch’s correction. t-value: 5.347, degrees of freedom: 11.08. n= 9 biologically independent iMN conversions from 3 control lines and 12 biologically independent iMN conversions from 5 C9-ALS lines. (b–d) iMN survival in excess glutamate following introduction of C9ORF72 (C9 isoform A or B) into C9ORF72 patient iMNs (b), but not control (b, d) or SOD1-ALS iMNs (c). For (b), n=50 iMNs per line for 2 control and 3 C9-ALS lines, iMNs quantified from 3 biologically independent iMN conversions per line. For (c), n=50 iMNs per condition, iMNs scored from 3 biologically independent iMN conversions. For (d), n=50 iMNs per line per condition for 2 control lines, iMNs quantified from 3 biologically independent iMN conversions. Each trace includes iMNs from 2–3 donors with the specified genotype (except SOD1-ALS (c)); see full details in Methods. (e) Strategy for knocking out C9ORF72 from control iPSCs using CRISPR/Cas9. (f) Survival of control (CTRL2) iMNs, the isogenic heterozygous (C9+/−) and homozygous (C9−/−) iMNs and C9ORF72 patient (C9-ALS) iMNs in excess glutamate. n=50 biologically independent iMNs per line per condition for one control and two C9-ALS lines, iMNs quantified from 3 biologically independent iMN conversions. (g) Control iMN survival in excess glutamate with scrambled or C9ORF72 antisense oligonucleotides (ASO). Each trace includes control iMNs from 2 donors. n=50 biologically independent iMNs per line per condition for 2 control lines, iMNs quantified from 3 biologically independent iMN conversions. All iMN survival experiments were analyzed by two-sided log-rank test, and statistical significance was calculated using the entire survival time course. iMN survival experiments in (b, d, and g) were performed in a Nikon Biostation, and (e and f) were performed in a Molecular Devices ImageExpress.
With the four components of a chemical heat pump (two solid-gas reactors, an evaporator and a condenser), a cycle of the double-effect type can be applied to continuous refrigeration. The performance of this process is analysed, allowing the infinite sink temperature and the couples of reactive salts to be used, which depend on the production temperature envisaged, to be selected. The results are ... [Show full abstract]Read more

(a) The levels of C9ORF72 variant 2 mRNA transcript (encoding isoform A). Values are mean ± s.e.m., two-tailed t-test with Welch’s correction. t-value: 5.347, degrees of freedom: 11.08. n= 9 biologically independent iMN conversions from 3 control lines and 12 biologically independent iMN conversions from 5 C9-ALS lines. (b–d) iMN survival in excess glutamate following introduction of C9ORF72 (C9 isoform A or B) into C9ORF72 patient iMNs (b), but not control (b, d) or SOD1-ALS iMNs (c). For (b), n=50 iMNs per line for 2 control and 3 C9-ALS lines, iMNs quantified from 3 biologically independent iMN conversions per line. For (c), n=50 iMNs per condition, iMNs scored from 3 biologically independent iMN conversions. For (d), n=50 iMNs per line per condition for 2 control lines, iMNs quantified from 3 biologically independent iMN conversions. Each trace includes iMNs from 2–3 donors with the specified genotype (except SOD1-ALS (c)); see full details in Methods. (e) Strategy for knocking out C9ORF72 from control iPSCs using CRISPR/Cas9. (f) Survival of control (CTRL2) iMNs, the isogenic heterozygous (C9+/−) and homozygous (C9−/−) iMNs and C9ORF72 patient (C9-ALS) iMNs in excess glutamate. n=50 biologically independent iMNs per line per condition for one control and two C9-ALS lines, iMNs quantified from 3 biologically independent iMN conversions. (g) Control iMN survival in excess glutamate with scrambled or C9ORF72 antisense oligonucleotides (ASO). Each trace includes control iMNs from 2 donors. n=50 biologically independent iMNs per line per condition for 2 control lines, iMNs quantified from 3 biologically independent iMN conversions. All iMN survival experiments were analyzed by two-sided log-rank test, and statistical significance was calculated using the entire survival time course. iMN survival experiments in (b, d, and g) were performed in a Nikon Biostation, and (e and f) were performed in a Molecular Devices ImageExpress.


Because C9ORF72 activity is required to maintain normal lysosomal function, we measured the effect of C9ORF72 activity on PR50 clearance by monitoring the clearance of PR50-Dendra2 fusion proteins in C9ORF72−/− iPSC-derived fibroblasts with or without exogenous C9ORF72. Dendra2 is a green fluorescent protein that irreversibly converts to red fluorescence when exposed to blue light, enabling quantification of its degradation 49. PR50-Dendra2 formed discrete punctae within cells, indicating that Dendra2 did not prevent intracellular aggregation of PR50 (Supplementary Fig. 14c). Expression of C9ORF72-T2A-GFP in C9ORF72−/− iPSC-derived fibroblasts significantly enhanced the decay of PR50-Dendra2 fluorescence over GFP alone (Supplementary Fig. 14d). To determine if C9ORF72 activity modulates DPR aggregate clearance in human motor neurons, we compared the decay of PR50-Dendra2 in C9ORF72+/+ and C9ORF72+/− iMNs (Fig. 5e and Suppementary Fig. 14e). Consistent with the hypothesis that C9ORF72 activity promotes DPR aggregate clearance, PR50-Dendra2 decayed significantly slower in C9ORF72+/− iMNs (Fig. 5e).
To verify that PIKFYVE-dependent modulation of vesicle trafficking was responsible for rescuing C9ORF72 patient iMN survival, we tested the ability of a constitutively active RAB5 mutant to block C9ORF72 patient iMN degeneration. Active RAB5 recruits PI3-kinase to synthesize PI3P from PI and therefore, like PIKFYVE inhibition, increases PI3P levels 56. Constitutively active RAB5 did not improve control iMN survival (n=2 controls)(Supplementary Fig. 15k), but successfully rescued C9ORF72 patient iMN survival (n=3 patients)(Supplementary Fig. 15l). In constrast, dominant negative RAB5, wild-type RAB5, or constitutively active RAB7 did not rescue C9ORF72 patient iMN survival (n=1, 3, 3 patients, respectively)(Supplementary Fig. 14m-o).

To measure the effect of dipeptide repeat protein expression on iMN survival, PR50 and GR50 were cloned into the pHAGE lentiviral vector as fusions with GFP to allow tracking of protein expression. iMN cultures were transduced with PR50 and GR50 lentiviruses at day 17 of reprogramming and longitudinal survival analysis was started the same day. 10 ng/ml of GDNF, BDNF, and CNTF was maintained throughout the experiment, and glutamate treatment was not performed. To measure PR50 turnover, PR50 was cloned into the pHAGE lentiviral vector as a fusion with Dendra2 (Addgene). iPSC-derived fibroblasts were generated according to Daley and colleagues64. Briefly, when C9ORF72−/− iPSC cultures reached 80% confluence, the medium was switched from mTeSR1 (Stem Cell Technologies) to human fibroblast medium containing DMEM (Life Technologies), 10% fetal bovine serum (FBS)(Thermo Fisher Scientific), and 1% penicillin/streptomycin (Life Technologies). Cells were passaged 2 to 3 times using Accutase (Life Technologies) before use in experiments. iPSC-derived fibroblasts were transduced with either pMXs-eGFP or pMXs-C9ORF72 isoform B-T2A-eGFP retrovirus and treated with 10 μg/ml mitomycin C for 3 hrs to inhibit cell proliferation. The cells were then transduced with the PR50–Dendra2 lentivirus and exposed to blue light for 1.5 sec using a lumencor LED light source to initiate photoconversion. The amount of decay (as a fraction of the starting level) of the red fluorescent punctae was monitored by longitudinal time lapse imaging in a Molecular Devices ImageExpress and analyzed using SVCell 2.0 (DRVision Technologies). Fluorescence was quantified at t = 0 and 12 hours after photoconversion. Distinct photoconverted punctae were treated as discrete objects for analysis (n = 20 each for +eGFP and +C9ORF72-T2A-eGFP). For each object, background fluorescence was subtracted and fluorescence was normalized according to object size. The fractional decay was statistically analyzed by two-tailed Student’s t-test. ** - p<.01.

We also found that Reduced C9ORF72 activity also induces iMN hypersensitivity to DPRs by impairing their clearance. This uncovers a more direct form of cooperative pathogenesis between gain- and loss-of-function mechanisms in C9ORF72 ALS/FTD. Through a potentially similar mechanism, reduced C9orf72 levels can also facilitate cytoplasmic TDP-43 accumulation in mouse neurons 20.
To determine if transcriptional changes in C9ORF72+/− and C9ORF72−/− iMNs also reflect the contribution of C9ORF72 protein levels to neurodegeneration, we performed RNA sequencing on flow-purified Hb9::RFP+ iMNs from C9ORF72+/−, C9ORF72−/−, and isogenic control iMNs, as well as C9ORF72 patient iMNs (Supplementary Table 7), and compared them to existing RNA-seq data from postmortem tissue 34,35. When examining consensus genes that were differentially expressed compared to controls in all C9ORF72 patient postmortem datasets (from GSE56504 and GSE67196)34,35, both C9ORF72+/− and C9ORF72 patient iMNs shared similar gene expression changes to the postmortem tissue (Supplementary Fig. 6). Thus, a reduction in C9ORF72 levels induces disease-associated transcriptional changes observed in C9ORF72 patient postmortem samples.
To determine if a deletion of C9ORF72 or the C9ORF72 repeat expansion caused changes in endosomal trafficking in motor neurons, we examined the number of early endosomes (RAB5+, EEA1+), late endosomes (RAB7+), and lysosomes (LAMP1+, LAMP2+, LAMP3+) in control, C9ORF72 patient, C9ORF72+/−, and C9ORF72−/− iMNs. We observed the most significant difference in the lysosomal population, with C9ORF72 patient iMNs (n=4 patients) having fewer LAMP1+, LAMP2+, and LAMP3+ vesicles than control iMNs (n=4 controls)(Fig. 3c, d and Supplementary Fig. 8a-d). C9ORF72+/− and C9ORF72−/− also harbored fewer LAMP1+, LAMP2+, and LAMP3+ vesicles than isogenic control iMNs, indicating that reduced C9ORF72 levels alone leads to a loss of lysosomes (Fig. 3c, e, f and Supplementary Fig. 8a-d). ASO-mediated knockdown of C9ORF72 expression also decreased lysosome numbers in iMNs (Supplementary Fig. 8e). Although membrane fractionation showed that control and patient iMNs have similar amounts of LAMP2 in the lysosomal membrane fraction (Supplementary Fig. 8f), analysis of the immunofluorescence intensity of LAMP proteins suggests that this is likely due to the fact that C9ORF72 patient and C9ORF72+/− iMNs have a higher concentration of LAMP proteins in their lysosomal membranes, possibly as a result of fewer lysosomes being present (Supplementary Fig. 8g). Using electron microscopy to identify lysosomes by their high election density 40, we verified that the vesicles reduced in C9ORF72-deficient cells were lysosomes (Fig. 3g-i). Forced expression of either C9ORF72 isoform restored the number of LAMP1+, LAMP2+, and LAMP3+ lysosomes in patient (n=4 patients) and C9ORF72-deficient iMNs (Fig. 3c-f and Supplementary Fig. 8a-h). To determine if loss of C9ORF72 activity reduces lysosome numbers in motor neurons in vivo, we measured the number of lysosomes in spinal motor neurons in Nestin-Cre-Stop-Flox-C9orf72 mice 22. C9orf72−/− motor neurons contained significantly fewer Lamp1+ lysosomes than control motor neurons (Fig. 3j, k).

Journalistic genres in China have acquired distinctive characteristics and have shaped original sub-genres that are unique to the local journalistic tradition. While many studies analyzing their characteristics have been written in Chinese, works on the subject in other languages are still scarce. This contribution aims to fill this void by presenting the two main genres in which written journalistic production can be understood, i.e., “news” and “views”, as well as their sub-genres, and showing how they are interpreted in Chinese media studies. The analysis is based on a corpus of recent academic publications that represent the current Chinese scholarly interpretations of local genres of journalism. In doing so, the paper also offers insights on recent theoretical reflections about the functions of journalistic writing in the People’s Republic of China.


Our iMN survival results (Fig. 1c-e) suggest that the repeat expansion alters iMN glutamate sensing. In cortical neurons, homeostatic synaptic plasticity is maintained through endocytosis and subsequent lysosomal degradation of glutamate receptors in response to chronic glutamate signaling 45,46. Defects in this process lead to the accumulation of glutamate receptors on the cell surface 45,46.
Cells were fixed in 6-well culture plates in 2.5 % glutaraldehyde in 0.1M cacodylate buffer, post-fixed in 1% osmium tetroxide for 1 hour and block stained in 1% uranyl acetate in 0.1M acetate buffer pH 4.4 overnight at 4 ˚C. Dehydration was performed in increasing concentrations of ethanol (10%/25%/50%/75%/90%/100%/100%/100%) for 15 minutes each and infiltrated with increasing concentrations of Eponate12 (Ted Pella Inc., Redding, CA, USA), 25% Eponate12 (no catalyst) in ethanol for 3 hours, 50% overnight, 100% for 5 hours, 100% overnight, and polymerized in fresh Eponate12 with DMP-30 for 48 hours at 60 ˚C. Previously marked areas were sawed out, the tissue culture plastic was removed and the selected area sectioned parallel to the substrate at a thickness of 70 nm. Sections at a depth of 3–5 µm were collected on formvar-filmed 50 mesh copper grids and imaged at 80 kV in an FEI 208 Morgagni (FEI is in Hillsboro, OR, USA). Per micrograph, cytosol was used to quantify the number of electron dense spheres that were defined as lysosomes 40.
In advanced traditional Chinese kung fu (martial arts), Neijing (Traditional Chinese: 內勁; pinyin: nèijìng) refers to the conscious control of the practitioner's qi, or "life energy", to gain advantages in combat.[1] Nèijìng is developed by using "Neigong" (Traditional Chinese: 內功; pinyin: nèigōng) (內功), or "internal exercises," as opposed to "wàigōng" (外功), "external exercises."
×