The fabrication of composite cathode with boroxine ring for all-solid-polymer lithium cell was described. Composite polymer electrolyte (CPE) was applied between the lithium metal anode and the composite cathode in a coin-shaped cell in order to prepare the solid-polymer electrolyte cell. The CPE films were cast on a flat polytetrafluoroethylene vessel from an acetonitrile slurry containing BaTiO ... [Show full abstract]Read more

Brand serves as commitment, as trust and as standard. It is the voting of the customers for a company and the natural sifter for customers to tell the good from the bad. Xuerong is convinced that quality is what comprises the brand. During the last 15 years we have cautiously and conscientiously created a brand channel partners and customers can trust. Today Xuerong can proudly claim that it is the leading role in edible mushroom and the market can also admit and prove our effort by higher value.
To verify that PIKFYVE is the functional target of the inhibitor, we first confirmed PIKFYVE expression by qPCR in control and patient (n=3 patients) iMNs (Supplementary Fig. 15b). Next, we verified that YM201636 rescued C9ORF72 patient iMN survival in a dose-dependent manner (Supplementary Fig. 15c). We then asked if Apilimod, a structurally distinct PIKFYVE inhibitor, could rescue patient iMN survival 51(Fig. 6b). To verify target engagement by Apilimod in iPSC-derived motor neurons, we administered Apilimod for three hours and measured EEA1+ early endosome size. PIKFYVE inhibition increases PI3P levels, leading to increased recruitment of EEA1 to early endosomes, more homotypic early endosomal fusion, and larger EEA1+ early endosomes 54. As expected, Apilimod treatment increased EEA1+ endosome size in a dose-dependent manner, verifying target engagement in motor neurons (Supplementary Fig. 15d, e).
Our results indicate that haploinsufficiency for C9ORF72 activity triggers neurodegeneration in C9ORF72 ALS, and this occurs by at least two mechanisms. First, reduced C9ORF72 activity causes the accumulation of glutamate receptors and excitotoxicity in response to glutamate. Although C9orf72 knockout mice do not display overt neurodegeneration14,18,22, these mice may be protected from excitotoxicity because they lack gain-of-function disease processes such as DPRs, which induce aberrant splicing and dysfunction of the EAAT2 glutamate transporter in astrocytes in vitro 12 and in C9ORF72 ALS patients 4,27. EAAT2 dysfunction causes glutamate accumulation in the cerebrospinal fluid of ALS patients 27, and consistent with this notion, we found that poly(PR) expression in human astrocytes reduced their rate of glutamate uptake. By using human iMNs, mice, and human post mortem tissue, we show for the first time that reduced C9ORF72 activity modulates the vulnerability of human motor neurons to degenerative stimuli and establish a mechanistic link between the C9ORF72 repeat expansion and glutamate-induced excitotoxicity
Primary chick myoblasts were dissected from D11 chick embryos and plated onto plastic dishes pre-coated with 0.1% gelatin. After 3 days of culture in muscle medium containing F10 (Life Technologies), 10% horse serum, 5% chicken serum (Life Technologies), 0.145 mg/ml CaCl2 (Sigma), and 2% Penicillin/Streptomycin, myoblasts were trypsinized and replated onto iMNs which were at days 15–18 post-transduction. The co-culture was maintained in neuronal medium containing DMEM/F12, 2% B27, 1% GlutaMax and 1% Penicillin/Streptomycin, supplemented with 10ng/ml BDNF, GDNF, and CNTF for 7 days in order to allow neuromuscular junctions to form. Videos were taken using Nikon Eclipse Tis microscope with NIS Element AR software. Light-stimulated contraction shown in Supplementary Figure 2j are representative of contraction observed in 2 biological replicates, with 5 contractile sites per replicate.

GCaMP6 was cloned into the pMXs-Dest-WRE retroviral vector and transduced into reprogramming cultures concurrently with the motor neuron factors. To assess GCaMP6 activity, 1.5 μm glutamate was added to iMN cultures and cells were imaged continuously for 2 minutes at 24 frames per second. GFP flashes were scored manually using the video recording. At least 3 different fields of view from three independent cultures, totalling 50–100 iMNs, were scored per condition.
To determine if a deletion of C9ORF72 or the C9ORF72 repeat expansion caused changes in endosomal trafficking in motor neurons, we examined the number of early endosomes (RAB5+, EEA1+), late endosomes (RAB7+), and lysosomes (LAMP1+, LAMP2+, LAMP3+) in control, C9ORF72 patient, C9ORF72+/−, and C9ORF72−/− iMNs. We observed the most significant difference in the lysosomal population, with C9ORF72 patient iMNs (n=4 patients) having fewer LAMP1+, LAMP2+, and LAMP3+ vesicles than control iMNs (n=4 controls)(Fig. 3c, d and Supplementary Fig. 8a-d). C9ORF72+/− and C9ORF72−/− also harbored fewer LAMP1+, LAMP2+, and LAMP3+ vesicles than isogenic control iMNs, indicating that reduced C9ORF72 levels alone leads to a loss of lysosomes (Fig. 3c, e, f and Supplementary Fig. 8a-d). ASO-mediated knockdown of C9ORF72 expression also decreased lysosome numbers in iMNs (Supplementary Fig. 8e). Although membrane fractionation showed that control and patient iMNs have similar amounts of LAMP2 in the lysosomal membrane fraction (Supplementary Fig. 8f), analysis of the immunofluorescence intensity of LAMP proteins suggests that this is likely due to the fact that C9ORF72 patient and C9ORF72+/− iMNs have a higher concentration of LAMP proteins in their lysosomal membranes, possibly as a result of fewer lysosomes being present (Supplementary Fig. 8g). Using electron microscopy to identify lysosomes by their high election density 40, we verified that the vesicles reduced in C9ORF72-deficient cells were lysosomes (Fig. 3g-i). Forced expression of either C9ORF72 isoform restored the number of LAMP1+, LAMP2+, and LAMP3+ lysosomes in patient (n=4 patients) and C9ORF72-deficient iMNs (Fig. 3c-f and Supplementary Fig. 8a-h). To determine if loss of C9ORF72 activity reduces lysosome numbers in motor neurons in vivo, we measured the number of lysosomes in spinal motor neurons in Nestin-Cre-Stop-Flox-C9orf72 mice 22. C9orf72−/− motor neurons contained significantly fewer Lamp1+ lysosomes than control motor neurons (Fig. 3j, k).

With the four components of a chemical heat pump (two solid-gas reactors, an evaporator and a condenser), a cycle of the double-effect type can be applied to continuous refrigeration. The performance of this process is analysed, allowing the infinite sink temperature and the couples of reactive salts to be used, which depend on the production temperature envisaged, to be selected. The results are ... [Show full abstract]Read more


GCaMP6 was cloned into the pMXs-Dest-WRE retroviral vector and transduced into reprogramming cultures concurrently with the motor neuron factors. To assess GCaMP6 activity, 1.5 μm glutamate was added to iMN cultures and cells were imaged continuously for 2 minutes at 24 frames per second. GFP flashes were scored manually using the video recording. At least 3 different fields of view from three independent cultures, totalling 50–100 iMNs, were scored per condition.
×