(a-b) Survival of control and CRISPR-mutant iMNs without excess glutamate with overexpression of eGFP or PR(50)-eGFP (a) or GR(50)-eGFP (b). (c-d) Survival of control and C9-ALS iMNs without excess glutamate with overexpression of eGFP or PR(50)-eGFP (c) or GR(50)-eGFP (d). For (a), n=50 (CTRL1 + GFP AND CTRL1 + PR(50)), 49 (C9ORF72+/− + GFP), and 47 (C9ORF72+/− + PR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line. For (b), n=50 (CTRL1 + GFP AND CTRL1 + GR(50)), 49 (C9ORF72+/− + GFP), and 40 (C9ORF72+/− + GR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line. For (c), n=50 (CTRL1 + GFP AND CTRL1 + PR(50)), 50 (from each of two C9-ALS lines + GFP), and 41 (from each of two C9-ALS lines + PR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line per condition. For (d), n=50 (CTRL1 + GFP AND CTRL1 + GR(50)), 50 (from each of two C9-ALS lines + GFP), and 46 and 47 (from two C9-ALS lines + GR(50)) iMNs per line, iMNs quantified from 3 biologically independent iMN conversions per line per condition. All iMN survival experiments in (a-d) were analyzed by two-sided log-rank test, and statistical significance was calculated using the entire survival time course. Survival curves for the “+GFP” condition were included as a reference, but were not used in statistical analyses. (e) Relative decay in Dendra2 fluorescence over 12 hours in iMNs of specified genotypes. Mean +/− s.e.m. n = 18 (control) and 24 (C9ORF72+/−) iMNs quantified from two biologically independent iMN conversions each, two-tailed t-test with Welch’s correction between data points at each time point, t-value: 2.739, degrees of freedom: 25.62). (f-h) Immunostaining to determine endogenous PR+ puncta in control or C9-ALS iMNs with or without overexpression of C9ORF72 isoform A or B. Scale bar = 2 μm. This experiment was repeated twice with similar results. (g) Mean +/− s.d. n= 4 biologically independent iMN conversions generated from two different iPSC lines per genotype. Quantified values represent the average number of PR+ puncta in 40 iMNs from a single iMN conversion. Two-tailed t-test, t-value: 5.908, degrees of freedom: 6. (h) Mean +/− s.e.m. n= 3 biologically independent iMN conversions per condition. Quantified values represent the average number of PR+ puncta in 40 iMNs from a single iMN conversion. One-way ANOVA with Tukey correction, F-value (DFn, DFd): (2, 6)=10.5. iMN survival experiments in (a-d) were performed in a Molecular Devices ImageExpress.

We compared the differential expression results from our data to other transcriptomic datasets in ALS, obtained from the Gene Expression Omnibus (GEO). Raw Affymetrix array data (.CEL files) were downloaded for dataset GSE56504, and preprocessed using a standard exon array pipeline implemented using the R Bioconductor package oligo. For GSE56504, only the laser-capture microdissection samples were included/ Differential expression was calculated using the R Bioconductor package limma. RNA-seq counts data was obtained for dataset GSE67196. For GSE67196, only the frontal cortex samples were included. Normalization and differential expression analysis were performed using DESeq2.
The fabrication of composite cathode with boroxine ring for all-solid-polymer lithium cell was described. Composite polymer electrolyte (CPE) was applied between the lithium metal anode and the composite cathode in a coin-shaped cell in order to prepare the solid-polymer electrolyte cell. The CPE films were cast on a flat polytetrafluoroethylene vessel from an acetonitrile slurry containing BaTiO ... [Show full abstract]Read more

International Advisory Board: James Archibald (Translation Studies) - Hugo de Burgh (Chinese Media Studies) - Kristen Brustad (Arabic Linguistics) - Daniel Coste (French Language) - Luciano Curreri (Italian Literature) - Claudio Di Meola (German Linguistics) - Donatella Dolcini (Hindi Studies) - Johann Drumbl (German Linguistics) - Denis Ferraris (Italian Literature) - Lawrence Grossberg (Cultural Studies) - Stephen Gundle (Film and Television Studies) - Tsuchiya Junji (Sociology) - John McLeod (Post-colonial Studies) - Estrella Montolío Durán (Spanish Language) - Silvia Morgana (Italian Linguistics) - Samir Marzouki (Translation, Cultural Relations) - Mbare Ngom (Post-Colonial Literatures) - Christiane Nord (Translation Studies) - Roberto Perin (History) - Giovanni Rovere (Italian Linguistics) - Lara Ryazanova-Clarke (Russian Studies) - Shi-Xu (Discourse and Cultural Studies) - Srikant Sarangi (Discourse analysis) - Françoise Sabban, Centre d'études sur la Chine moderne et contemporaine (Chinese Studies) - Itala Vivan (Cultural Studies, Museum Studies)
To determine if transcriptional changes in C9ORF72+/− and C9ORF72−/− iMNs also reflect the contribution of C9ORF72 protein levels to neurodegeneration, we performed RNA sequencing on flow-purified Hb9::RFP+ iMNs from C9ORF72+/−, C9ORF72−/−, and isogenic control iMNs, as well as C9ORF72 patient iMNs (Supplementary Table 7), and compared them to existing RNA-seq data from postmortem tissue 34,35. When examining consensus genes that were differentially expressed compared to controls in all C9ORF72 patient postmortem datasets (from GSE56504 and GSE67196)34,35, both C9ORF72+/− and C9ORF72 patient iMNs shared similar gene expression changes to the postmortem tissue (Supplementary Fig. 6). Thus, a reduction in C9ORF72 levels induces disease-associated transcriptional changes observed in C9ORF72 patient postmortem samples.

Human lymphocytes from healthy subjects and ALS patients were obtained from the NINDS Biorepository at the Coriell Institute for Medical Research and reprogrammed into iPSCs as previously described using episomal vectors61. Briefly, mammalian expression vectors containing Oct4, Sox2, Klf4, L-Myc, Lin28, and a p53 shRNA were introduced into the lymphocytes using the Adult Dermal Fibroblast Nucleofector™ Kit and Nucleofector™ 2b Device (Lonza) according to the manufacturer’s protocol. The cells were then cultured on mouse feeders until iPSC colonies appeared. The colonies were then expanded and maintained on Matrigel (BD) in mTeSR1 medium (Stem Cell Technologies).
Yingxiao Shi,#1,2,3 Shaoyu Lin,#1,2,3 Kim A. Staats,1,2,3 Yichen Li,1,2,3 Wen-Hsuan Chang,1,2,3 Shu-Ting Hung,1,2,3 Eric Hendricks,1,2,3 Gabriel R. Linares,1,2,3 Yaoming Wang,3,4 Esther Y. Son,5 Xinmei Wen,6 Kassandra Kisler,3,4 Brent Wilkinson,3 Louise Menendez,1,2,3 Tohru Sugawara,1,2,3 Phillip Woolwine,1,2,3 Mickey Huang,1,2,3 Michael J. Cowan,1,2,3 Brandon Ge,1,2,3 Nicole Koutsodendris,1,2,3 Kaitlin P. Sandor,1,2,3 Jacob Komberg,1,2,3 Vamshidhar R. Vangoor,7 Ketharini Senthilkumar,7 Valerie Hennes,1,2,3 Carina Seah,1,2,3 Amy R. Nelson,3,4 Tze-Yuan Cheng,8 Shih-Jong J. Lee,8 Paul R. August,9 Jason A. Chen,10 Nicholas Wisniewski,10 Hanson-Smith Victor,10 T. Grant Belgard,10 Alice Zhang,10 Marcelo Coba,3,11 Chris Grunseich,12 Michael E. Ward,12 Leonard H. van den Berg,13 R. Jeroen Pasterkamp,7 Davide Trotti,6 Berislav V. Zlokovic,3,4 and Justin K. Ichida1,2,3,†
On the other hand, the level of the Neijing force depends on the extent one can exercise over one's will power to release an inner qi energy. Within the framework of Chinese martial arts, every person is believed to possess the inborn energy of qi. Martial artists can harness the force of qi so that it is strong enough to be applied in combat. When qi is being directed by one's will, it is called Neijing.[4]

Yingxiao Shi,#1,2,3 Shaoyu Lin,#1,2,3 Kim A. Staats,1,2,3 Yichen Li,1,2,3 Wen-Hsuan Chang,1,2,3 Shu-Ting Hung,1,2,3 Eric Hendricks,1,2,3 Gabriel R. Linares,1,2,3 Yaoming Wang,3,4 Esther Y. Son,5 Xinmei Wen,6 Kassandra Kisler,3,4 Brent Wilkinson,3 Louise Menendez,1,2,3 Tohru Sugawara,1,2,3 Phillip Woolwine,1,2,3 Mickey Huang,1,2,3 Michael J. Cowan,1,2,3 Brandon Ge,1,2,3 Nicole Koutsodendris,1,2,3 Kaitlin P. Sandor,1,2,3 Jacob Komberg,1,2,3 Vamshidhar R. Vangoor,7 Ketharini Senthilkumar,7 Valerie Hennes,1,2,3 Carina Seah,1,2,3 Amy R. Nelson,3,4 Tze-Yuan Cheng,8 Shih-Jong J. Lee,8 Paul R. August,9 Jason A. Chen,10 Nicholas Wisniewski,10 Hanson-Smith Victor,10 T. Grant Belgard,10 Alice Zhang,10 Marcelo Coba,3,11 Chris Grunseich,12 Michael E. Ward,12 Leonard H. van den Berg,13 R. Jeroen Pasterkamp,7 Davide Trotti,6 Berislav V. Zlokovic,3,4 and Justin K. Ichida1,2,3,†

CRISPR/Cas9-mediated genome editing was performed in human iPSCs as previously described, using Cas9 nuclease62. To generate loss-of-function alleles of C9ORF72, control iPSCs were transfected with a sgRNA targeting exon 2 of the C9ORF72 gene. Colonies were picked on day 7 after transfection and genotyped by PCR amplification and sequencing of exon 2. Colonies containing a frameshift mutation were clonally purified on MEF feeders and the resulting clones were re-sequenced to verify the loss-of-function mutation in C9ORF72.
Mumcoupon.com is #1 place to find 100% off and $10 Udemy coupons. We update every day with the latest Udemy coupon codes and free courses. Udemy has over 80,000 online courses taught by expert instructors. Discover free online Udemy courses here and start learning new skills. Coupon codes do not last long, come back often to check for new free courses. Join our mailing list and follow us on social media for new free Udemy course updates. Happy Learning…!
To measure the effect of dipeptide repeat protein expression on iMN survival, PR50 and GR50 were cloned into the pHAGE lentiviral vector as fusions with GFP to allow tracking of protein expression. iMN cultures were transduced with PR50 and GR50 lentiviruses at day 17 of reprogramming and longitudinal survival analysis was started the same day. 10 ng/ml of GDNF, BDNF, and CNTF was maintained throughout the experiment, and glutamate treatment was not performed. To measure PR50 turnover, PR50 was cloned into the pHAGE lentiviral vector as a fusion with Dendra2 (Addgene). iPSC-derived fibroblasts were generated according to Daley and colleagues64. Briefly, when C9ORF72−/− iPSC cultures reached 80% confluence, the medium was switched from mTeSR1 (Stem Cell Technologies) to human fibroblast medium containing DMEM (Life Technologies), 10% fetal bovine serum (FBS)(Thermo Fisher Scientific), and 1% penicillin/streptomycin (Life Technologies). Cells were passaged 2 to 3 times using Accutase (Life Technologies) before use in experiments. iPSC-derived fibroblasts were transduced with either pMXs-eGFP or pMXs-C9ORF72 isoform B-T2A-eGFP retrovirus and treated with 10 μg/ml mitomycin C for 3 hrs to inhibit cell proliferation. The cells were then transduced with the PR50–Dendra2 lentivirus and exposed to blue light for 1.5 sec using a lumencor LED light source to initiate photoconversion. The amount of decay (as a fraction of the starting level) of the red fluorescent punctae was monitored by longitudinal time lapse imaging in a Molecular Devices ImageExpress and analyzed using SVCell 2.0 (DRVision Technologies). Fluorescence was quantified at t = 0 and 12 hours after photoconversion. Distinct photoconverted punctae were treated as discrete objects for analysis (n = 20 each for +eGFP and +C9ORF72-T2A-eGFP). For each object, background fluorescence was subtracted and fluorescence was normalized according to object size. The fractional decay was statistically analyzed by two-tailed Student’s t-test. ** - p<.01.
×